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SUMMARY
Homeostatic plasticity is hypothesized to bidirectionally regulate neuronal activity around a stable set point
to compensate for learning-related plasticity, but to date only upward firing rate homeostasis (FRH) has been
demonstrated in vivo. We combined chronic electrophysiology in freely behaving animals with an eye-
reopening paradigm to enhance firing in primary visual cortex (V1) and found that neurons bidirectionally
regulate firing rates around an individual set point. Downward FRH did not require N-methyl-D-aspartate
receptor (NMDAR) signaling and was associated with homeostatic scaling down of synaptic strengths.
Like upward FRH, downward FRHwas gated by arousal state but in the opposite direction: it occurred during
sleep, not during wake. In contrast, firing rate depression associated with Hebbian plasticity happened
independently of sleep and wake. Thus, sleep and wake states temporally segregate upward and downward
FRH, which might prevent interference or provide unopposed homeostatic compensation when it is
needed most.
INTRODUCTION

Proper functioning of neocortical networks requires that they be

simultaneously plastic and stable, and these demands necessi-

tate the expression of various Hebbian and homeostatic mecha-

nisms that modify synaptic connections and neuronal firing rates

(Turrigiano and Nelson, 2004). We use ‘‘Hebbian’’ here to refer to

plasticity mechanisms that alter synaptic strengths as a function

of correlations in pre- and postsynaptic activity (Abbott and

Nelson, 2000; Caporale andDan, 2008). The action of these plas-

ticity mechanisms is specific to subsets of synapses, as

opposed to the global effects of homeostatic synaptic plasticity.

Another feature of many forms of Hebbian plasticity is that

they require the activity of N-methyl-D-aspartate receptors

(NMDARs) (Malenka and Bear, 2004; L€uscher and Malenka,

2012; Lisman, 2017). Hebbian plasticity mechanisms are widely

considered to provide the basis for long-term storage of informa-

tion in the brain, but they are also theorized to be intrinsically de-

stabilizing when left unchecked. Modeling studies support this

idea and generally conclude that neuronal networks require

compensatory forces that stabilize activity during experience-

dependent plasticity and learning (Miller and MacKay, 1994;

Tetzlaff et al., 2011; Litwin-Kumar and Doiron, 2014). Homeo-

static mechanisms are thought to provide this balance by

regulating neuronal activity around a stable firing rate set point,

a process known as firing rate homeostasis (FRH) (Turrigiano

and Nelson, 2004). Upward FRH has been convincingly demon-

strated in the mammalian visual system in vivo using various

approaches (Kaneko et al., 2008; Keck et al., 2013; Hengen

et al., 2013, 2016; Barnes et al., 2015) and strikingly is gated

by behavioral state so that it occurs exclusively during the active
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wake (AW) state (Hengen et al., 2016). Here we ask whether FRH

is bidirectional, as theory predicts, and whether upward and

downward homeostatic plasticity are gated similarly by sleep/

wake states.

It is widely accepted that sleep and wake play a key role in

regulating brain plasticity, but experiments designed to under-

stand the details of this regulation have yielded contradictory re-

sults (Puentes-Mestril and Aton, 2017). A prominent hypothesis

(the synaptic homeostasis hypothesis [SHY]) posits that a net

potentiation of synaptic strengths and firing rates occurs during

waking, whereas the function of sleep, and in particular of non-

rapid-eye-movement (NREM) sleep, is to enable homeostatic

downregulation of these parameters (Tononi and Cirelli, 2003,

2014). Evidence supporting SHY has accumulated, but it re-

mains a controversial theory (Frank and Cantera, 2014).

Neuronal firing rates have been found to be higher after wake

in the rat somatosensory cortex (Vyazovskiy et al., 2009) but

not different across sleep or wake in visual cortex (Hengen

et al., 2016), whereas other experiments find that sleep- and

wake-driven changes in firing rate are not uniform across

neuronal populations (Watson et al., 2016). These findings

focused on firing rate dynamics in the absence of plasticity

induction. Here we combine our ability to track the activity of in-

dividual neurons with a protocol that triggers robust plasticity to

specifically dissect the impact of sleep and wake states on

downward FRH.

To induce and observe downward FRH, we performed chronic

electrophysiology in monocular visual cortex (V1m) of freely

behaving rats undergoing monocular deprivation (MD) followed

by eye reopening (ER) on day 5 of MD, a protocol known to in-

crease activity within primary visual cortex (V1) (Toyoizumi
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et al., 2014). We found a robust increase in firing within 24 h of

ER, followed by a gradual return of individual neurons’ firing rates

to their pre-MD levels. Using blockade of NMDARs and

measurements of synaptic strengths in acute slices, we showed

that the firing rate overshoot following ER is consistent with

Hebbian plasticity mechanisms, whereas the subsequent recov-

ery of activity is consistent with homeostatic synaptic scaling.

This downward FRH only occurred during sleep, in contrast to

upward FRH, which happened during wake (Hengen et al.,

2016). It was also significantly slower when sleep was reduced

using an intermittent sleep deprivation (SD) paradigm, indicating

a key role for sleep in mediating downward FRH. We wondered

whether Hebbian plasticity was also gated by sleep and wake.

When we analyzed the MD-induced reduction in firing rate

(mainly driven by Hebbian long-term depression [LTD]), we

found that it unfolded independently of sleep and wake states.

Our data support a model in which downward Hebbian plasticity

happens independently of sleep and wake, whereas homeostat-

ic mechanisms are differentially gated by sleep and wake states

depending on the direction of compensation. This behavioral-

state segregation of upward and downward homeostasis could

prevent interference between them during experience-depen-

dent plasticity or learning.

RESULTS

Bidirectional homeostatic regulation of firing has not been

demonstrated in vivo, and the role of sleep in its induction is un-

known. Furthermore, it is unclear how homeostatic and Hebbian

mechanisms are integrated in vivo and whether sleep and wake

states play a role in their orchestration. To examine these

questions, we recorded single-unit activity from V1m of freely

behaving rats undergoing MD and then ER and analyzed the

behavior of individual putative pyramidal neurons that could be

continuously recorded during this paradigm. We monitored

and manipulated sleep and wake states throughout these

multi-day recordings to assess their impact on plasticity and

paired this with pharmacology and ex vivo synaptic interrogation

to tease apart the impact of sleep and wake states on different

plasticity mechanisms.

ER after MD Causes an Overshoot in Firing Rates
Followed by Homeostatic Recovery
Prolonged MD in rats induces biphasic changes in activity in V1

in vivo, consisting of an initial drop in activity, followed by an up-
Figure 1. Eye Reopening after MD Causes an Overshoot in Firing Follo

(A) Example neurons recorded continuously from the control hemisphere for 5 da

dashed line indicates the mean firing rate (FR) of the neuron during the baseline (

dark, and the artifact from unplugging animals for ER surgery has been removed

(B) Example neurons recorded continuously from the reopened hemisphere for 5

(C and D) Average firing rate traces for all neurons recorded in control and reope

(E) Comparison of individual neuronal firing rates between baseline (MD4) and earl

over the corresponding 12-h period. The yellow line indicates unity.

(F) Percentage of change in firing rate from baseline at early ER and late ER for reco

Kruskal-Wallis test (p < 0.0001) with Tukey-Kramer post hoc; n.s. (not significant

(G) Mean firing rate of every cell at baseline (MD4), early ER, and late ER. Each dot

and mean firing rates for the same neuron are connected via solid lines. Contro

***p < 0.001.
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ward homeostatic rebound (Hengen et al., 2016). To determine

whether the homeostatic regulation of firing is bidirectional, we

sought to cause an overshoot in firing above baseline and ask

whether activity would again recover. To achieve this, we

bilaterally recorded single-unit activity in V1m continuously for

9–11 days in freely behaving young rats (recordings initiated at

postnatal day [P] 24–P26); after 3 days of baseline recording,

animals underwent MD, and then on the 5th day of MD (when

the firing rates of V1m neurons have returned to baseline), we

reopened the eye (ER). In this experimental design, neurons

recorded from the hemisphere ipsilateral to the manipulated

eye constitute a within-animal control (control hemisphere). We

separated recorded units into regular spiking units (RSUs, puta-

tive pyramidal neurons) and fast-spiking units (FS, putative inhib-

itory interneurons) using standard methods (Niell and Stryker,

2008; Hengen et al., 2013) (Figure S1B) and restricted our anal-

ysis to RSUs. We reproduced our previous finding that firing

rates drop after 2 days of MD and subsequently recover to base-

line (Figure S1A). ER on day 5 after MD caused a similar biphasic

pattern of change in the opposite direction, namely, an over-

shoot of activity above baseline levels, followed by a downward

recovery (Figures 1A–1D and S1A). To analyze this, we focused

on the time around ER.We analyzed the activity of neurons start-

ing on the 4th day after MD (MD4), when firing rates are back to

baseline levels, on average (Figure S1A). To measure the change

in firing induced by ER, we normalized each cell’s activity to its

mean during the 12 h before ER (i.e., dark phase on MD4), taking

this period as our new baseline. ER increased firing in individual

neurons with different baseline firing rates, followed by a slow

recovery back to baseline (Figure 1B). Neurons in the control

hemisphere were unaffected by ER (Figure 1A). The same

pattern was observed when firing rates across the population

were normalized and averaged (reopened hemisphere, n = 36

neurons from 5 animals; control hemisphere, n = 31 neurons

from 5 animals) (Figures 1C and 1D). The same results were ob-

tained when computing the geometric rather than arithmetic

mean (Figures S1G and S1H).

V1 RSUs have mean firing rates that span several orders of

magnitude. To examine activity patterns across the population,

we compared the firing rate on MD4 (baseline) to firing rates on

day 2 or day 4 after ER (early ER [ER2] or late ER [ER4]) for

each neuron (Figures 1E–1H). On ER2, most neuronal firing rates

from the reopened hemisphere were elevated compared with

controls (Figure 1E), whereas the two distributions were similar

by ER4 (Figure 1E). We quantified the changes at these time
wed by Homeostatic Recovery

ys. Here and below, solid lines represent the firing rate of a single neuron, the

MD4) period, white and gray bars in the background indicate 12 h of light and

.

days.

ned hemispheres, normalized to baseline (MD4) for each cell.

y ER (left) or late ER (right). Each dot is themean firing rate of a neuron averaged

rded neurons. Black lines indicatemean ± SEM. Control, n = 31; reopen, n = 36;

) p = 0.99, **p = 0.003, ***p = 0.002, ****p = 0.0004.

represents themean firing rate of a neuron over the corresponding 12-h period,

l, n = 31; reopen, n = 36; Wilcoxon sign-rank test with Bonferroni correction;
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Figure 2. ER-Induced Firing Rate Overshoot, but Not Downward Recovery, Is NMDAR-Dependent

(A and B) Experiment schematic: the NMDAR antagonist CPP (15 mg/kg) was injected subcutaneously once at the time of eye reopening (A) or twice after that at

24-h intervals (B).

(C and D) Example firing rates of neurons recorded in each of the CPP experiments.

(E) Change in firing rate from baseline to early ER to late ER for neurons recorded in the first CPP condition (one injection at time of ER). n = 15;Wilcoxon sign-rank

test with Bonferroni correction; *p = 0.0251, **p = 0.0026.

(F) Percentage of change in firing rate from baseline in the first CPP condition. One-sample t test compared with mean = 0; ER2, p = 0.723; ER4, p < 10�4. n = 15;

two-sample t test; *p = 0.0293.

(G) As in (E), but for the second CPP condition (two injections, 24 and 48 h after ER). n = 22; Wilcoxon sign-rank test with Bonferroni correction; *p = 0.0269,

**p = 0.0014.

(H) As in (F), but for the second CPP condition. One-sample t test compared with mean = 0; ER2, p = 0.003; ER4, p = 0.657. Two-sample t test; **p = 0.0058.
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points by computing the percentage of change in firing rate from

the MD4 baseline (Figure 1F). The firing rates of reopened hemi-

sphere neurons roughly doubled on ER2 (114% ± 23% change

from MD4), but by ER4, the mean change from MD4 was near

0% (2% ± 13%) and similar to the mean change for control neu-

rons (10% ± 18%). Examining the behavior of individual neurons

across time showed a significant change only in the reopened

hemisphere, where most neurons increase and then decrease

firing (30/36 neurons, i.e., 83.3%, showed an increase of more

than 1 standard deviation from baseline in their mean firing

rate calculated in 12-h bins) (Figure 1G). We used a bootstrap

analysis to show that the mean change between baseline and

ER4 of close to 0% in the reopened hemisphere cannot be ex-
plained unless each neuron’s firing rate returns close to its initial

baseline rate (Figures S2A–S2D), suggesting that—in agreement

with upward FRH (Hengen et al., 2016)—neurons regulate firing

around an individual set point.

These data demonstrate that neuronal firing rates are homeo-

statically regulated in vivo in a bidirectional manner and that dur-

ing downward FRH, neurons return close to an individual firing

rate set point.

ER-Induced Firing Rate Overshoot, but Not Downward
Recovery, Is NMDAR-Dependent
Long-lasting changes in firing can be driven by various plasticity

mechanisms mediated by distinct signaling pathways. We set
Neuron 109, 530–544, February 3, 2021 533
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out to test whether the changes caused by ER depended on the

activity of NMDARs, which are required for many forms of Heb-

bian plasticity (Malenka and Bear, 2004), but not for homeostatic

synaptic scaling (Turrigiano et al., 1998). To this effect, we

used systemic injections of 3-(2-carboxypiperazin-4-yl)propyl-

1-phosphonic acid (CPP), a potent NMDAR antagonist that has

been shown to block induction of long-term potentiation (LTP)

up to 24 h after administration without affecting visual function

(Villarreal et al., 2002; Sato and Stryker, 2008; Toyoizumi et al.,

2014). When CPP was injected at the time of ER, it blocked the

increase in firing (Figures 2A and 2C; n = 15 neurons from 3

animals). We found no change in the distribution of firing rates

between MD4 and ER2 in this case and a slight decrease be-

tween ER2 and ER4 (Figure 2E). Neurons in this condition

showed no change in firing at ER2 (Figure 2F; 6% ± 16%), and

a slight decrease from ER2 to ER4 (Figure 2F; �32% ± 6%).

Thus, CPP can block the firing rate overshoot induced by ER,

suggesting that ER potentiates firing via NMDAR-dependent

plasticity, as suggested previously (Toyoizumi et al., 2014).

Many homeostatic plasticity mechanisms do not require

NMDAR activity (Turrigiano, 2008). If downward FRH results

from NMDAR-independent homeostatic plasticity, we should

see little effect on the downward homeostatic recovery of firing

rates if we administered CPP after ER potentiates firing. We

tested this by injecting CPP twice, at 24-h intervals, starting

24 h after ER (Figure 2B). Despite a small and acute depressive

effect of CPP on activity immediately following administration

in both hemispheres (Figures S2E and S2F), we observed a

normal ER-induced increase before CPP administration (firing

rate change at ER2: 60% ± 18%) and then a recovery of firing

in this condition, similar to un-injected animals (Figures 2D, 2G,

and 2H; n = 22 neurons from 3 animals). Relevant to our sleep/

wake analysis given later, CPP did not affect the total amount

of sleep (Figure S8; see STAR Methods for more details).

We conclude that the increase in firing rate following ER does

not simply result from increased sensory drive but is instead an

active process that requires NMDAR-dependent plasticity.

Conversely, the subsequent downward FRH is independent of

NMDAR activity, consistent with it being driven by homeostatic

plasticity mechanisms.

Downward Firing Rate Recovery Is Associated with
Synaptic Scaling Down
After establishing that downward FRH is NMDAR independent,

we wished to know whether it is accompanied by synaptic

scaling down, one of the principal forms of homeostatic plasticity

within V1 (Turrigiano et al., 1998; Turrigiano, 2008). We per-

formed MD and ER as described earlier, took acute slices of

V1m either 24 h (ER2) or 72 h (ER4) after ER, and recorded mini-

ature excitatory postsynaptic currents (mEPSCs) from layer 2/3

pyramidal neurons in V1m (Figures 3A and 3B). Neurons in the

control hemispheres of the same animals were used as controls.

AlthoughmEPSC amplitudes were stable in the control condition

(ER2: 10.82 ± 0.35 pA, n = 27 neurons, 11 animals; ER4: 10.32 ±

0.24 pA, n = 17 neurons, 7 animals), neurons in the reopened

hemisphere showed a significant increase in mEPSC amplitudes

at ER2 (11.56 ± 0.21 pA, n = 25 neurons, 11 animals) and then

depression by ER4 (10.51 ± 0.23 pA, n = 22 neurons, 4 animals)
534 Neuron 109, 530–544, February 3, 2021
(Figure 3C). There were no changes in mEPSC frequency, pas-

sive neuronal properties, or waveform kinetics for any conditions

(Figures S3A–S3G). Analysis of the cumulative distribution func-

tion (CDF) for all recorded mEPSC events revealed a significant

shift to higher amplitudes in the ER2 reopened condition,

compared with both ER4 reopened (p < 10�5) and ER4 control

(p < 10�6) (Figure 3D).

Homeostatic synaptic scaling affects mEPSC amplitudes in a

uniform manner (Turrigiano et al., 1998). To test whether the

change inmEPSC amplitude between ER2 and ER4 is consistent

with synaptic scaling down, we plotted ranked ER2 reopened

amplitudes against ranked ER4 reopened amplitudes and fit a

linear function to the resulting plot (Figures S3H and S3I). We

then scaled the ER2 distribution using this function (Figure 3E).

Although the unscaled CDFs are significantly smaller on ER4

than ER2 (p < 10�6), the scaled-down ER2 CDFwas almost iden-

tical to the ER4 CDF, and the two are statistically indistinguish-

able (p = 0.575), consistent with synaptic scaling. We next asked

whether the potentiation of synaptic strength on ER2 was also

consistent with synaptic scaling; in this case, we found that the

scaled control CDF did not recapitulate the ER2 reopened CDF

and remained statistically distinct (p = 0.038), indicating a non-

uniform change in strength across synapses, consistent with a

non-homeostatic form of synaptic plasticity.

It has been suggested that this procedure cannot accurately

detect multiplicative synaptic scaling (Hanes et al., 2020). We

therefore simulated perfect multiplicative scaling to assess the

reliability of this standard approach (Turrigiano et al., 1998;

Blackman et al., 2012; Kim et al., 2012). To do this, we generated

two artificial distributions of mEPSC amplitudes based on real-

istic synaptic parameters, scaled one of them by a known factor,

and applied the preceding analysismethod (see STARMethods).

The results of our linear fit procedure for this artificial perfect

multiplicative scaling are indistinguishable from those obtained

when analyzing real data (Figures S3H and S4). Thus, our pro-

cedure can reliably detect multiplicative scaling.

Together with the effects of NMDAR blockade, these data

support the conclusion that a Hebbian, LTP-like mechanism

contributes to firing rate potentiation following ER, whereas syn-

aptic scaling down contributes to downward FRH.

Downward FRH Is Gated by Sleep
We have previously shown that upward FRH is expressed only

during periods of wake (Hengen et al., 2016), but it is unknown

whether homeostatic changes in the downward direction are

regulated in this same way. We took advantage of our ability to

record continuously from neurons during downward FRH,

when animals naturally cycle between periods of sleep and

wake, to investigate this. Animals’ behavioral state was classi-

fied with the aid of a supervised learning algorithm using a com-

bination of local field potential (LFP), electromyogram (EMG),

and video analysis (Figure S5A; see STAR Methods). We first

examined sleep- or wake-dense periods (2.5 h with at least

70% sleep or wake) (Figure 4A) over the 36-h period when

neuronal firing rates on average are decreasing. Consistent

with our previous results (Hengen et al., 2016), sleep and wake

had no impact on firing rate in the control hemisphere. In

contrast, in the ER hemisphere, decreases in firing rate occurred
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Figure 3. Downward Firing Rate Recovery

Is Associated with Synaptic Scaling Down

(A) Schematic of experimental timeline. Slices

were taken 24 h (ER2) or 72 h (ER4) after ER.

(B) Example recordings of mEPSCs in L2/3 pyra-

midal neurons in V1. Average peak-aligned

mEPSC waveforms for each condition are also

shown.

(C) Average mEPSC amplitude in each condition.

Each dot represents one neuron. Black lines

represent mean ± SEM. Kruskal-Wallis test (p <

0.001); ER2 control, n = 27; ER4 control, n = 17;

ER2 reopen, n = 25; ER4 reopen, n = 22; **p < 0.01.

(D) Cumulative distribution of mEPSC amplitudes.

Kuiper test with Bonferroni correction; # p < 10�5,

## p < 10�6.

(E) Cumulative distribution of mEPSC amplitudes.

The black dotted line represents ER2 reopen dis-

tribution scaled according to the linear function

fðxÞ = 0:877x + 0:318. Kuiper test; ## p < 10�6.

(F) As in (E) but comparing the amplitude distri-

bution at ER2 in control versus reopen conditions.

The ER2 control distribution has been scaled

according to the linear function

fðxÞ = 0:999x + 0:692. Kuiper test; *p = 0.0377,

***p < 0.001.
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exclusively during sleep-dense periods (Figure 4B). Results re-

mained similar when key analysis parameters (such as window

size and density percentage threshold) were changed (Fig-

ure S6A). The activity of most neurons in the reopened hemi-

sphere decreased across sleep-dense periods, but not during

periods of wake (Figure 4C).

We further classified behavior into four vigilance states: rapid

eye movement (REM) sleep, NREM, quiet wake (QW), and active

wake (AW). Comparisons of mean firing rates across these

states are complicated by small but consistent differences in ac-
N

tivity between them (Figures S5D and

S5E). We therefore used an approach

based on analysis of extended sleep or

wake (defined as at least 30 min of

sleep/wake without interruptions greater

than 1 min; see Miyawaki and Diba,

2016). In each of these periods, we

measured the mean firing rate of neurons

in a given state (e.g., NREM). This allowed

us to compare firing rates in one state as

a function of time spent asleep/awake

(Figures 5A and 5B). We plotted the

mean firing rate of each neuron (same da-

taset as Figure 1) in the behavioral state

of interest as a function of the time from

the start of the extended sleep/wake

episode, Z scored to the mean of the

whole episode. In the reopened hemi-

spheres, there was a significant negative

correlation between neuronal activity in

NREM and time from the start of

extended sleep (r = �0.192, p < 10�34),

and a similar pattern in REM (r =
�0.119, p < 10�10) (Figure 5C). These correlations were absent

from both NREM and REM in control neurons (Figure 5E), as

well as in reopened neurons during both wake states (Figure 5G),

indicating that the decrease in firing was specific to extended

sleep episodes in the reopened hemisphere. Corroborating

these results, we found a decrease in firing rate between the first

and the last NREM and REM episodes in the reopened hemi-

sphere (Figure 5D) but not in the other two conditions (Figures

5F and 5H). To determinewhether the cumulative change in firing

measured across many sleep states can account for the
euron 109, 530–544, February 3, 2021 535
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Figure 4. Downward FRH Occurs during

Sleep-Dense, but Not Wake-Dense, Periods

(A) Schematic of state-dense analysis.

(B) Average change in firing rate over sleep-dense

(S) or wake-dense (W) windows in control and re-

opened hemispheres. Bars represent mean ± SEM.

Kruskal-Wallis test (p < 10�6) with Tukey-Kramer

post hoc; control S, n = 19 neurons, 13 windows;

control W, n = 19 neurons, 10 windows; reopen S,

n = 36 neurons, 13 windows; reopen W, n = 36

neurons, 14 windows; **p = 0.0051, ***p = 0.0031,

## p < 10�7.

(C) Cumulative distribution function of mean change

in firing rate across S or W windows for all neurons.

Vertical dashed line indicates no change. Two-

sample Kolmogorov-Smirnov test with Bonferroni

correction; control, n = 19; reopened, n = 36; *p =

0.0380, ## p < 10�6.
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recovery in firing rates during downward FRH, we measured the

slope of the relationship in Figure 5C and calculated the ex-

pected recovery for each neuron based on the time the animal

spent asleep during ER2–ER4; this simulation matched the

data well (Figure S7; see STAR Methods).

Importantly, we asked whether circadian effects play a role.

We calculated the Z scored firing rate change between the last

and the first NREM episode in each period of extended sleep

and plotted these against the time of day at which that extended

sleep period started. Firing rate decreases were visible in

extended sleep epochs at all circadian times with no discernable

circadian oscillation (Figure S6B). In addition, all findings in Fig-

ure 5 were nearly identical when we repeated the analysis sepa-

rately for periods of extended sleep occurring in the light phase

or the dark phase (Figures S6C and S6D). Altogether, these

analyses suggest that circadian effects are negligible. An inter-

esting discrepancy is the significant (though weak) negative cor-

relation for REM sleep in the control hemisphere, specifically in

the light (Figure S6D). Whether this effect is meaningful is hard

to say: the difference between last and first REM states within

extended sleep was not significant for these data (Figure S6D).

Altogether, these results show that downward FRH is

happening exclusively during periods of sleep. Furthermore,

control neurons show no consistent decrease in firing during

sleep, which demonstrates that sleep does not constitutively

drive changes in firing rate but rather enables the expression of

downward FRH.

Sleep Deprivation Prevents Downward FRH after ER
To establish a causal link between sleep and downward FRH, we

used an intermittent SD paradigm to reduce sleep during the ho-

meostatic recovery phase and determine whether this slowed
536 Neuron 109, 530–544, February 3, 2021
downward FRH. Animals were kept awake

for a full hour at a time via introduction of

new toys and gentle handling (prolonged

wake epochs). Rats were then allowed to

sleep (recovery sleep epochs), and a new

session of SD was started when they natu-

rally awoke again. This intermittent depri-
vation avoids excessive stress while producing a significant

reduction in sleep. Animals were sleep deprived in this manner

during two 12-h periods, corresponding to the light phases of

ER2 and ER3 (the 2nd and 3rd day after ER), when animals nor-

mally sleep the most (Figure 6A). This protocol resulted in a sig-

nificant decrease in the total time spent asleep during those 12-h

periods (Figure 6D, SD1 and SD2), but not in the following 12 h of

light (Figure 6D, no SD) or in any dark periods (Figure 6E).

We hypothesized that this paradigmwould reduce downward

FRH during the 12-h periods of SD and that FRH would resume

when animals were allowed to sleep naturally again. To quantify

any such effect, we first measured the change in firing rate be-

tween the 12-h dark periods on either side of a 12-h SD session

(Figure 6A). We compared the change in firing rate for SD ani-

mals (n = 22 neurons from 4 animals) to the change in firing

rate over the same period for reopened hemisphere data in

the non-sleep-deprived (non-SD) animals (same dataset as

Figure 1, labeled control in Figure 6). Overall, there was a

consistently larger decrease in firing rate in non-SD animals.

Particularly during the light phase of ER3, firing rates decreased

significantly in the non-SD group but remained unchanged in

the SD group (Figure 6B, middle panel). We also examined

the last light period in the experiment (light phase of ER4) (Fig-

ure 6, no SD), during which no SD occurred, and found that

firing rates in the SD animals significantly decrease over this

period (Figure 6B, right panel). In both the non-SD and the SD

cases, the decreases in firing rate were driven by periods of

sleep (Figure 6C).

These data establish a direct link between the amount

of sleep and the degree of downward FRH, supporting the hy-

pothesis that sleep is necessary for the recovery of activity

following ER.
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Figure 5. During Downward FRH, Firing Rates Depress as a Function of Time Spent Asleep

(A) Schematic of extended sleep analysis for one neuron. Individual epochs of a state (NREM in this example) are foundwithin an extended sleep episode, and the

neuron’s mean firing rate is calculated in each one; these values are then plotted against the start time of that epoch, aligned to the start of the whole episode (t0).

(B) As in (A), but showing an example extended wake episode.

(C) Correlation between firing rate in NREM and REM and time from start of extended sleep in the reopened hemisphere. All data points are shown in the left

panels; the right panels show data in 10 groups of equal size for ease of visualization (dots showmean ± SEM). Pearson r and associated p values were computed

on the ungrouped data (NREM, n = 4,036 data points; REM, n = 3,161 data points). Firing rates were Z scored to the extended sleep episode.

(legend continued on next page)
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Both NREM and REM Sleep Contribute to Homeostatic
Recovery
An important question that our data and analyses so far do not

address is the impact of different sleep states on FRH. Both

REM and NREM sleep have been proposed to play key roles in

driving plasticity (Diekelmann and Born, 2010; Abel et al.,

2013; Tononi and Cirelli, 2014). To determine whether either

state plays a principal role in driving FRH, we analyzed all

NREM-REM-NREM episodes (sleep triplets) (Figure 7A) that

occurred during the two days of homeostatic recovery and

then estimated the effect of the intervening REM episode by

comparing for each triplet the mean firing rate at the end of the

first NREM episode to the mean firing rate at the beginning of

the second NREM episode. We averaged firing rates over

5 min and took care to avoid transition effects by excluding

1 min of data at every transition. This analysis confirmed that

REM sleep has no basal effect on firing rate in control neurons,

whereas a significant decrease in firing rate was evident for neu-

rons in the reopened hemisphere (Figures 7B and 7C). To quan-

tify the effect of NREM, we next performed the same analysis but

for REM-NREM-REM triplets; because of the short duration of

REM episodes, we computed mean firing rates in 90-s bins at

the end and start of the first and second REM episodes,

excluding 30 s at the transition (Figure 7D). Again, we saw no ef-

fect in control neurons and a decrease in firing rate in reopened

neurons (Figures 7E and 7F). These findings show that FRH oc-

curs during both NREM and REM sleep states, suggesting that

the feature or features of brain states that enable downward

FRH are likely common to both REM and NREM sleep.

Non-homeostatic Firing Rate Changes Happen
Independently of Animals’ Behavioral State
MD initially depresses firing rates over the first 2 days of MD, via

LTD at thalamocortical synapses and additional changes at in-

tracortical synapses (Heynen et al., 2003; Maffei et al., 2006;

Miska et al., 2018). This allowed us to test whether sleep and

wake states also gate this non-homeostatic form of plasticity.

During early MD, neuronal firing rates are stable for a variable

period before starting to decline. Using an automated algorithm

to detect the start of the drop for each neuron, we found that it

happened quickly (over 6–12 h) in individual neurons (Figures

8A and 8B) but that the timing was variable: all our recorded reg-

ular spiking neurons could be classified as early-drop neurons, in

which most of the drop occurred during the first 12-h light period

after MD (Figures 8A and 8C), or late-drop neurons, in which

most of the drop occurred during the second 12-h light period af-

ter MD (Figures 8B and 8D). When we analyzed the relationship

between sleep/wake behavior and the drop in neuronal firing

rates during the first or second 12-h light periods (for early-

drop and late-drop neurons, respectively) we found that neither

group had a bias toward wake or sleep. The magnitude of the
(D) Difference in firing rate between the last and the first NREM (left) or REM (right

show mean ± SEM. One-sample t test compared with mean = 0; n = 74 episode

(E and F) As in (C) and (D), but for NREM and REM in the control hemisphere (NRE

compared with mean = 0; n = 47 episodes.

(G and H) As in (C) and (D), but for active wake (AW, n = 4,156 data points) and quie

t test compared with mean = 0; n = 70 episodes.
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decrease in firing rate was similar across both behavioral states

(Figure 8E), and it was not correlated with the amount of time

spent asleep (Figure 8F). Thus, we conclude that sleep specif-

ically enables a reduction in firing rate driven by homeostatic

plasticity.

DISCUSSION

It has been theorized that bidirectional stabilization of firing rates

around a set point is a critical feature that allows developmental

or experience-dependent synaptic changes to refine network

architecture without fatally destabilizing activity (Abbott and

Nelson, 2000; Marder and Prinz, 2002; Tetzlaff et al., 2011; Tur-

rigiano, 2012; Litwin-Kumar and Doiron, 2014). Although upward

FRH is known to occur in vivo, whether this process is indeed

bidirectional and whether upward and downward homeostasis

share mechanistic features have been open questions. Here

we used MD followed by ER to potentiate firing in V1 and then

analyzed the behavior of individual neurons over time in freely

behaving animals. MD-ER produced a �2-fold potentiation of

firing that was NMDAR dependent and accompanied by non-

uniform changes in synaptic strengths. This was followed by

downward FRH, which slowly returned individual firing rates

close to their initial values independently of NMDAR signaling,

and was accompanied by a scaling down of synaptic strengths.

This is consistent with homeostatic synaptic scaling, although

we cannot rule out the involvement of additional non-NMDAR-

dependent mechanisms. We found that downward FRH is pro-

moted by sleep, the opposite of upward FRH (Hengen et al.,

2016). This does not reflect a general role for sleep in all forms

of synaptic depression, because the early phase of MD (driven

by LTD-like mechanisms) unfolded independently of sleep and

wake states. Our data show that the role of sleep/wake states

in promoting circuit plasticity is nuanced and that the induction

of upward and downward FRH is segregated by behavioral state.

Although sensory deprivation is a venerable paradigm for

inducing neocortical plasticity (Espinosa and Stryker, 2012;

Gainey and Feldman, 2017), there has been a dearth of ap-

proaches for increasing, rather than decreasing, neocortical

firing to study downward homeostasis. Prolonged dark expo-

sure has been proposed to induce homeostatic plasticity within

V1 (Goel and Lee, 2007), but more recent work has shown that

changes in mEPSC amplitude during dark exposure unfold via

metaplastic rules that are distinct from those that induce syn-

aptic scaling (Bridi et al., 2018; Chokshi et al., 2019). Dark

exposure does not affect firing rates in V1 over the first day

or so (Torrado Pacheco et al., 2019) and thus would not be ex-

pected to induce synaptic scaling, and light reexposure after

60 h in the dark only elevates firing for �20 min, not long

enough to trigger slow forms of homeostatic plasticity (Torrado

Pacheco et al., 2019). In contrast, MD followed by ER induces a
) epoch within an extended sleep episode, averaged across all episodes. Bars

s; ## p < 10�6, ### p < 10�17.

M, n = 2,933 data points; REM, n = 2,249 data points). In (F), one-sample t test

t wake (QW, 5,131 data points) in the reopened hemisphere. In (H), one-sample
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Figure 6. Sleep Deprivation (SD) during Downward FRH Slows the Restoration of Firing Rates

(A) Diagram of the SD paradigm and analysis. Yellow and gray rectangles represent 12 h of light and dark, respectively. Animals were sleep deprived during two

12-h periods during the light phase of ER2 and ER3. The 12-h bins corresponding to the dark phases were used to calculate average firing rates for individual

neurons. The change in firing rate was then calculated across each SD period and for the last light period (no SD).

(B) Change in firing rate for each recorded neuron in the SD condition (n = 22 neurons from 4 animals) and control condition (n = 36 neurons from 5 animals). Left,

effect of SD on ER2 (change in firing rate between time points 1 and 2). Middle, effect of SD on ER3 (change in firing rate between time points 2 and 3). Right, effect

of last light period (change in firing rate between time points 3 and 4, when no SD occurred). Yellow dashed lines indicate no change. **p = 0.0079, two-sample

t test; # p = 0.0449, ## p = 0.0084, #### p < 10�5; one-sample t test versus mean of 0.

(C) Average change in firing rate for each neuron across periods of sleep andwake for the control group, and periods of prolongedwake and recovery sleep for the

SD group. Only data for the two 12-h SD periods (and corresponding times in the control dataset) were used. Data for both periods were pooled. The yellow

dashed line indicates no change. *p = 0.0374, ***p = 0.0001, ****p < 10�4; one-way ANOVA (p < 10�4) with Tukey-Kramer post hoc; # p = 0.0247, #### p < 10�6;

linear model comparing all group means to a mean of 0.

(legend continued on next page)
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Figure 7. Downward FRH Occurs during Both

NREM and REM Sleep

(A) Schematic for the analysis of NREM1-REM-NREM2

triplets.

(B) Firing rate values are Z scored within each triplet

and then averaged across all triplets for a given

neuron. Each dot represents a neuron, andmean firing

rate values for the same neuron are linked by hori-

zontal lines. ****p < 0.0001; Wilcoxon sign-rank test.

(C) Difference in mean firing rate values between the

first 5 min of NREM2 and the last 5 min of NREM1.

Black lines indicate mean ± SEM. The yellow dashed

line indicates no change. ****p < 0.0001; one-sample t

test versus mean of 0.

(D) As in (A), but for REM1-NREM-REM2 triplets.

(E) As in (B), but for REM1-NREM-REM2 triplets. *p =

0.05; Wilcoxon sign-rank test.

(F) As in (C), but for REM1-NREM-REM2 triplets. *p =

0.0383; one-sample t test versus mean of 0.
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robust and long-lasting increase in firing in V1 that develops

over several hours and is blocked by NMDAR antagonists, sug-

gesting (consistent with previous work by Toyoizumi et al.,

2014) that it is a consequence of Hebbian synaptic plasticity

induced by the restoration of correlated visual drive through

the previously closed eye.
(D) Average time spent in sleep (left, blue) or wake (right, gray) during 4 12-h light periods: baseline, SD1, SD

SD decreased time spent in sleep and increased time spent in wake during these light periods. **p = 0.0012

with Tukey-Kramer post hoc.

(E) As in (D), but for the 12-h dark periods immediately following the 12-h light period for the corresponding

post hoc (all p > 0.28).
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The process of downward FRH revealed

here bears several similarities to upward

FRH (Hengen et al., 2016). They both unfold

slowly over �2 days, are accompanied by

synaptic scaling of excitatory synapses in

the correct direction to contribute to restora-

tion of firing, and bring individual neuronal

firing rates back to an individual set point. It

was thus surprising to find that they have a

diametrically opposite dependence upon

behavioral state: upward FRH occurs during

active waking, whereas downward FRH

occurs during sleep. These findings show

that upward and downward homeostatic

compensation do not operate simultaneously

within neuronal circuits and add complexity

to the idea that the function of sleep is to pro-

vide a window of opportunity for homeostatic

plasticity (Wang et al., 2011).

SHY proposes that wakefulness drives

learning-related increases in synaptic

strengths and firing rates, whereas sleep

renormalizes activity by downregulating

synaptic strengths, a process dependent

on activity patterns during NREM sleep

(Tononi and Cirelli, 2014). A combination of
structural, electrophysiological, and molecular evidence has

been put forward in support of SHY (de Vivo et al., 2017; Vyazov-

skiy et al., 2008, 2009; Liu et al., 2010; Diering et al., 2017), but

contradictory data have also been reported (Yang et al., 2014;

Chauvette et al., 2012; Aton et al., 2014; Durkin and Aton,

2016), and in some cases the interpretation of these findings
2, and no SD (corresponding to periods indicated in A).

, ***p = 0.0007, ****p < 10�4; one-way ANOVA (p < 10�5)

label. One-way ANOVA (p = 0.31) with Tukey-Kramer
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Figure 8. Non-homeostatic Firing Rate

Changes Happen Independently of Animals’

Behavioral State

(A) Two example neurons whose activity begins

decreasing in the first light period after MD (early

drop). Dashed lines indicate the baseline firing rate

for each neuron. White/gray bars in the background

indicate 12 h of light/dark.

(B) As in (A), but for two neurons whose drop-in firing

rate begins during the second light period after MD

(late drop).

(C) Average baseline-normalized firing rate of all

early-drop neurons. The dashed line indicates the

baseline firing rate.

(D) As in (C), but for late-drop neurons.

(E) Change in firing rate across sleep- or wake-dense

epochs for all neurons in their respective 12-h drop

period. Control S, n = 38 epochs; control W, n = 12

epochs; deprived S, n = 38 epochs; deprived W, n =

26 epochs.

(F) Correlation between change in firing rate during

drop and percentage of time spent asleep in the

same period. Each data point represents the average

change in firing rate across early-drop (circles) or

late-drop (diamonds) neurons, and each color rep-

resents a different animal (n = 6 animals). Percentage

of time asleep is calculated per animal in the early-

drop or late-drop 12-h period. The black dashed line

represents no change. The black solid line shows the

linear fit to the data.
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has been questioned (Frank, 2012; Frank and Cantera, 2014;

Timofeev and Chauvette, 2017; Puentes-Mestril and Aton,

2017). In particular, it has been unclear whether sleep and

wake cause global oscillations in firing rates under baseline con-

ditions, when animals have not experienced a dramatic plasticity

or learning event. Such oscillations have been observed in the

hippocampus and frontal cortex but were not uniform across

the neuronal population (Miyawaki and Diba, 2016; Watson

et al., 2016; Miyawaki et al., 2019). In the absence of plasticity in-

duction, we observe stable firing during relatively long, consoli-

dated sleep/wake states in V1, both here and previously (Hengen

et al., 2016), indicating that in V1, sleep and wake do not by

themselves drive global changes in excitability. Furthermore,

we find that downward firing rate changes driven by Hebbian

plasticity during early MD unfold independently of sleep and

wake states. Thus, it is not the case that all decreases in synaptic

strength and firing preferentially occur during sleep.

NREM and REM sleep have been proposed to serve distinct

roles in the regulation of neuronal firing and plasticity, so it is

interesting that downward FRH occurs during both sleep states

(Figure 7). REM sleep has been implicated in firing rate de-

creases in hippocampus and cortex (Grosmark et al., 2012;

Niethard et al., 2016), in pruning and maintenance of dendritic

spines (Li et al., 2017), and more broadly in memory consolida-

tion (Boyce et al., 2017). SHY instead proposes that slow wave

activity during NREM sleep is the specific driver of homeostatic
decreases in synaptic strength (Tononi and

Cirelli, 2014), whereas other studies high-

light a role for NREM sleep in synaptic
potentiation following learning (Yang et al., 2014; Aton et al.,

2014; Durkin and Aton, 2016). In this context, the similar effects

of REM and NREM on downward FRH could be explained in two

ways. First, the plasticity mechanism or mechanisms driving

downward FRH in V1 may be equally enabled during both brain

states, which would put interesting constraints on the mecha-

nisms of the gating process. The second possibility is that

distinct plasticity mechanisms expressed in REM and NREM

cooperate to restore activity to baseline levels. This might be ad-

vantageous if these mechanisms act on different parameters of

neuronal plasticity, such as structural and functional synaptic

changes. More precise manipulations of behavioral state, such

as deprivation restricted to REM sleep, would help shed light

on this question.

Our results paint a nuanced and complex picture of the impact

of sleep and wake on neuronal plasticity. The effect of sleep on

firing rate changes is not uniform but instead depends on the

particular forms of synaptic plasticity activated, which may

help explain the diversity of outcomes in experiments designed

to test the role of sleep in the induction of plasticity (Raven

et al., 2018; Frank and Seibt, 2018). Although our data argue

against a constitutive role of sleep in reducing circuit excitability

(Figure 5) (see Hengen et al., 2016), we find that when it is

induced through manipulations of experience, downward FRH

(and presumably the underlying downscaling of synapses) oc-

curs preferentially during sleep. This finding is consistent with
Neuron 109, 530–544, February 3, 2021 541
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data showing that SD interferes with molecular signaling cas-

cades that are important for scaling down (Diering et al., 2017).

The most parsimonious explanation for our data is that rather

than constitutively inducing downscaling, sleep is permissive

for the expression of downward homeostatic plasticity when it

is induced by perturbations to the circuit.

A surprising finding of this study is that upward and downward

FRH are gated by distinct sleep/wake states. What is the mech-

anism by which this is achieved, and what is the purpose of this

segregation? One promising lead may be the starkly contrasting

neuromodulatory environments that neocortical neurons are

exposed to during sleep and wake (Lee and Dan, 2012). Neuro-

modulators may regulate plasticity mechanisms by modulating

neuronal activity (Goard and Dan, 2009; Herrero et al., 2008) or

by directly acting on signaling pathways involved in plasticity

induction, such as the Homer1-mGluR complex (Diering et al.,

2017). The molecular pathways that regulate synaptic scaling

up and down are mostly divergent but show some overlap (Turri-

giano, 2017; Styr et al., 2019). Onepossible reason for the tempo-

ral segregation of upward and downward homeostasis could be

to reduce interference or saturation of the molecular pathways

thatmediate homeostatic plasticity. A complementary possibility

is that behavioral state gating ensures strong unidirectional ho-

meostatic compensation for defined periods; this may have ben-

efits in terms of computation and learning by providing strong

compensation when it is needed most and perhaps by allowing

unopposed Hebbian changes during limited windows of time.
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All further information and requests for resources should be directed to the Lead Contact, Gina G. Turrigiano (turrigiano@

brandeis.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The code used for this study is available in the public repository at the following URL: https://github.com/alejandrotorrado/

ATP2020_paper. Data are available upon request from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal care as well as surgical and experimental procedures were approved by the Animal Care and Use Committee (IACUC) of

Brandeis University and complied with the guidelines of the National Institutes of Health. All experiments were performed on Long-

Evans rats of both sexes (Charles River Laboratories, Wilmington, MA, USA; strain code: 006) aged P21-P36. No differences were

noted between sexes so the data were combined. Rats underwent electrode implant surgeries at P21. Recordings were started at

P24-26, MD was performed at P27-28, and recordings lasted until P35-36. This period corresponds to the critical period for visual

plasticity. We chose to use animals of this age to increase our chances of inducing strong plasticity with our visual manipulations,

resulting in firing rate changes large enough to observe homeostatic recovery, should it happen. Timed pregnant female Long-Evans

rats were obtained and housed on a 12h/12h light/dark cycle with free access to food and water. For each in vivo electrophysiology

experiment, 2 subjects from the same litter were weaned at post-natal day 21 (P21) for electrode implant surgeries and then housed

together in a satellite facility. For slice physiology, rats were weaned at P21, housed in the main animal facility along with littermates,

and returned there after every surgical procedure.

Number of neurons and animals for each experiment are as follows:

d Main MD/Eye Re-opening experiment n = 36 neurons, 5 animals (reopened hemisphere; 3 males, 2 females); n = 31 neurons,

6 animals (control hemisphere; 3 males, 3 females). Relevant to Figures 1, 4, 5, 6, and 7.

d CPP experiments: n = 15 neurons, 3 animals (oneCPP injection on ER1; 3males); n = 22 neurons, 3 animals (twoCPP injections,

on ER2 and ER3; 2 males, 1 female). Relevant to Figure 2.

d Slice physiology: control ER2, n = 27 neurons, 11 animals (4 males, 7 females); re-open ER2, n = 25 neurons, 11 animals

(4 males, 7 females); control ER4, n = 17 neurons, 7 animals (4 males, 3 females); re-open ER4, n = 22 neurons, 4 animals

(4 males, 3 females). Relevant to Figure 3.

d MD/ER and sleep deprivation experiments: n = 22 neurons from 4 animals (3 males, 1 female). Relevant to Figure 6.
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d Analysis of sleep/wake effects on the drop in firing during early MD: n = 45 neurons, 7 animals (3 males, 4 females). Relevant to

Figure 8.
METHOD DETAILS

Surgical procedures
Electrode implants

Rats were implanted with electrode arrays as described previously (Hengen et al., 2013). Briefly, custom 16-channel tungsten wire

(33 mm tip diameter, Tucker-Davis Technologies, TDT, Alachua, FL, USA) arrays were implanted bilaterally in V1m. Anesthesia was

induced with an intraperitoneal injection of ketamine/xylazine/acepromazine (KXA) cocktail (70 mg/kg ketamine; 3.5 mg/kg xylazine;

0.7 mg/kg acepromazine) and maintained with isoflurane (1.0% - 2.0% concentration in air) delivered via an anesthesia system with

integrated digital vaporizer (Somnosuite, Kent Scientific, Torrington, CT, USA) through a stereotaxic head holder (Model 923-B with

Model 1924-C-11.5 mask, Kopf Instruments, Tujunga, CA, USA). The skull was exposed, cleaned with hydrogen peroxide, and any

bleeding spots were lightly cauterized. Three small holes were drilled in the bone, one above the cerebellum and two above motor/

somatosensory cortex, and miniature machine screws (Antrin Inc., Fallbrook, CA, USA) were inserted in each. A craniotomy was

drilled above V1mon the left hemisphere and the duramaterwas pulled back using a 25Gneedle. The electrode array was then slowly

lowered into the brain and the exposed craniotomy was covered with a silicone elastomer (Kwik-Cast, World Precision Instruments,

Sarasota, FL, USA). The array was secured using dental cement, then grounded to both front screws using steel wire and soldering

paste. The same procedure was repeated for the right hemisphere, and both arrays were secured to the screws and bone surface

using dental cement. Total headcap weight was approximately 2g. Finally, two braided steel wires were implanted deep in the nuchal

muscle for EMG recordings.

Monocular deprivation

For MD, rats were briefly (�20 s) administered 4% isoflurane, then transferred to a heating pad and placed in a nose cone that

delivered 1.0 - 3.0% isoflurane in air. Ophthalmic ointment was applied to the eye not being sutured to prevent desiccation. The other

eyelid was cleaned 3 times with betadine followed by flushing with sterile saline. Lidocaine cream was applied to the eyelid. The

bottom and top part of the eyelid were then sutured together using 6-0 nylon or polyester sutures (4 mattress sutures). The sutured

eye was covered in antibiotic ointment and lidocaine, and analgesic (meloxicam, 1 mg/kg) was administered subcutaneously. The

lidocaine, antibiotic and analgesic were given again 24 hours after surgery. Sutures were checked daily and animals were excluded

if sutures were not intact at the time of ER.

Eye re-opening

Rats were anesthetized as for MD. Ophthalmic ointment was applied to the non-sutured eye. The sutured eye was cleaned with

betadine and saline thrice. Sutures were then carefully cut with fine-tipped surgical scissors, and removed using small forceps.

The re-opened eye was flushed with saline until it was free of any extraneous tissue and looked clean. Ophthalmic antibiotic ointment

was applied, and the animal returned to the cage. Occasionally (3 animals), the eye was found to have developed infection or a

cataract during the lid suture period. These animals were excluded from the study.

Continuous single-unit recordings in freely behaving animals
Following electrode implant surgery rats were allowed to recover for 2 days in separate cages with ad lib access to food and water.

During this time animals were handled twice daily by experimenters or assistants, placed in the same cage for 10 minutes twice daily

to allow for social interaction, and given treats (Froot Loops). The evening before the recording started animals were transferred to a

clear plexiglass cage of dimensions 18’’x12’’x18’’ (length, depth, height) and separated into two arenas by a clear plastic divider with

1’’ holes to allow for tactile and olfactory interaction between siblings while preventing aggressive play and jostling of headcaps.

Animals were kept on a 12h/12h light/dark cycle in a temperature- and humidity-controlled room (lights on 7:30am, 21�C, 30%–

55% humidity). The arrays were connected to TDT commutators via ZIF-clip headstages to allow animals to behave freely. Data

were recorded continuously for 9-12 days (up to �250 hours). Animals were only disconnected for MD and ER procedures

(�20 min each animal). Data were acquired at 25 kHz, digitized and streamed to disk online using a TDT Neurophysiology Worksta-

tion and Data Streamer. Spike extraction, clustering and sorting were done using custom MATLAB and Python code (see below).

Automated spike extraction, clustering and sorting
Spike extraction, clustering and sorting were done as previously described (Hengen et al., 2016; Torrado Pacheco et al., 2019).

Spikes were detected in the raw signal as threshold crossings (�4 standard deviations from mean signal) and re-sampled at 3x

the original rate. Principal component analysis (PCA) was done on all spikes from each channel, and the first four principal compo-

nents were used for clustering using KlustaKwik software (Harris et al., 2000). Due to memory constraints, clustering was done on a

subset of 5 million spikes if the number of spikes on a given channel exceeded 5 million. A random forest classifier implemented in

python was used to classify clusters according to a model built on a dataset of 1200 clusters manually scored by expert observers.

A set of 19 features, including ISI contamination (% of ISIs < 3 msec), similarity to regular spiking unit (RSU) and fast-spiking unit (FS)

waveform templates, amount of 60 Hz noise contamination and kinetics of the mean waveform. Cluster quality was also ensured by
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thresholding of L-ratio and isolation distance (Schmitzer-Torbert et al., 2005). Clusters were classified as noise, multi-unit or single-

unit. Only single-unit clusters with a clear refractory period were used for firing rate analysis. We classified units as RSU or FS based

on established criteria (mean waveform trough-to-peak and tail slope, Hengen et al., 2016; see also Figure S1B). Only RSUs (putative

excitatory neurons) were used for analysis.

Some neurons were lost during the recording, presumably due to electrode drift or gliosis. To establish ‘‘on’’ and ‘‘off’’ times for

neurons, we used ISI contamination: when hourly % of ISIs < 3 msec was above 4%, unit was considered to be offline. Based on

these ‘‘on’’ and ‘‘off’’ times, only units that were online for 80% of the experiment were used for analysis. Additionally, we used a

stringent post hoc bootstrap analysis (Figures S1C–S1E) of daily average waveforms to discriminate between units that were

followed continuously for 5 days versus multi-unit signal. Daily mean waveforms (WFs) for 5 days (MD4 to ER4) were computed

for all putative single-units; then for each unit we randomly picked 3 of its WFs and mixed them with two other WFs from a randomly

selected cell in the dataset. Based on these 5 WFs, calculated the daily mean-squared error (MSE) between them, and found the

maximum MSE for shuffled units. This process was repeated 1000 times per cell, to obtain a distribution of random unit maximum

MSEs. We chose maximum as opposed to summed or average MSE to increase stringency: this method results in a high MSE for a

WF that is stable for 4 days but changes in the last day, for example. To obtain an MSE threshold, we chose the lower bound of the

95% confidence interval for the mean of the distribution of random unit maximum MSEs. Putative units with maximum MSE across

days greater than this value were excluded from analysis. The resulting real units had very similar WFs across days and lowmaximum

MSE (Figures S1C and S1D).

Transcardial perfusions
Animals were deeply anesthetized with a double dose of KXA (see above for full dose). The heart was exposed and a 21G needle

inserted in the left ventricle. After cutting a small hole in the right atrium, 0.9% saline was perfused through the circulatory system

using a peristaltic pump for 5-7 minutes. The perfusion was switched to 3.7% paraformaldehyde (PFA) for another 5-7 minutes.

The brain was extracted taking care not to damage the electrode insertion site, and preserved in a solution of 3.7% PFA and

30% sucrose for at least 7 days for cryo-protection.

Histology
Fixed brains were blocked using a razor blade and mounted on a freezing microtome platform kept cold by dry ice. Brains were

embedded in O.C.T. compound (Tissue-Tek, Sakura, Japan) and 60 mm thick sections were taken and placed in phosphate-buffered

saline (PBS) overnight. Slices were then stained with cresyl violet to dye the Nissl substance in neurons. Stained sections were

mounted and coverslipped, then imaged at 4x or 10x on a digital microscope (Keyence, Belgium) to confirm the location of each

electrode wire.

CPP injections
All CPP injections were done on animals that were undergoing chronic electrophysiological recordings. Animals were not unplugged

for this procedure, unless eye re-opening surgery was also performed. After weighing, animals were administered a 15mg/kg dose of

(RS)-CPP (Tocris, Bio-Techne corp., Minneapolis, MN, USA) dissolved in bacteriostatic 0.9% saline subcutaneously. The CPP

solutions were prepared on the day of injection, and re-used the next day when applicable (storing overnight at 4�C).
CPP has been shown to impact sleep architecture, though to a lesser extent than other NMDAR antagonists (Campbell et al., 2002).

We asked whether we could detect an effect of CPP on the behavioral state of injected animals. For animals injected twice (on ER2

and ER3) we found no effect of CPP on total time spent in sleep, or in the total duration of sleep episodes (Figures S8A and S8B). We

also computed the duration of and time spent in NREM and REM states, in 12-hour periods corresponding to the light/dark phases.

We grouped data from the two light periods without CPP injections (MD4 and ER1) and with CPP injections (ER2 and ER3), and

compared CPP injected animals with un-injected animals from our main dataset. We found a small increase in the time spent in

NREM in the light for both datasets (Figure S8C), indicating this is not an effect specific to CPP. We also found a slight increase

in the duration of NREM episodes in CPP injected animals (Figures S8D–S8F).

Sleep deprivation
Sleep deprivation experiments were carried out on rats bilaterally implanted with electrode arrays in V1m (n = 4). The experiments

were identical to the main recordings, with rats undergoing monocular deprivation followed by eye re-opening 5 days later. To probe

the role of sleep, we deprived rats of sleep during two 12-hour periods, both corresponding to the 12-hour light phase, on the second

and third day after eye re-opening (ER2 and ER3; in other words, during hours 24-36 and 48-60 after ER; Figure 6A). The animals’

behavioral state was monitored continuously via live video and EMG signal. Animals were allowed to cycle naturally between

wake and sleep, but every wake episode was extended so as to last at least one hour (‘‘Prolonged Wake’’). We achieve this via intro-

duction of novel objects into the cage (toys) as well as gentle stimulation with a paintbrush or gloved hand, usually after novel object

introduction stopped being effective toward the end of the hour. Following a prolonged wake episode, animals were allowed to sleep

freely (‘‘Recovery Sleep’’). When they next woke up, another session of sleep deprivation began. Periods of wake lasting less than
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2 minutes were ignored, i.e., animals had to be naturally awake for at least 2 minutes to trigger the start of a new prolonged wake

episode. Sleep and wake states were classified post hoc as described below to determine the impact of this procedure on the dura-

tion of sleep and wake.

Slice electrophysiology
Solutions

Standard ACSF (inmM): 126 NaCl, 25 NaHCO3, 3 KCl, 2 CaCl2, 2MgSO4, 1 NaH2PO4, 0.5 Na-Ascorbate, with dextrose added to

bring osmolarity to 310-315 mOsm, and titrated with HCl to bring pH to 7.35.

TTX-ACSF: standard ACSF with added tetrodotoxin (TTX), 0.2 mM.

Choline solution (in mM): 110 Choline-Cl, 25 NaHCO3, 11.6 Na-Ascorbate, 7 MgCl2, 3.1 Na-Pyruvate, 2.5 KCl, 1.25 NaH2PO4,

and 0.5 CaCl2, with dextrose added to bring osmolarity to 315 mOsm, and titrated with HCl to bring pH to 7.35.

K-gluconate internal solution (inmM): 100 K-gluconate, 10 KCl, 10 HEPES, 5.37 Biocytin, 10 Na-Phosphocreatine, 4Mg-ATP, and

0.3 Na-GTP, with sucrose added to bring osmolarity to 295 mOsm and KOH added to bring pH to 7.35.

Acute brain slice preparation

Coronal brain slices (300 mm) containing V1 from both hemispheres were prepared using a procedure similar to one used in previous

studies (Miska et al., 2018). Animals were placed in a sealed container with 4% isoflurane in air and deeply anesthetized. They were

then quickly decapitated and the front part of the brain (excluding the cerebellum and part of the brainstem) was extracted within 60 s

and placed in cold (�1�C) carbogenated (95% O2, 5% CO2) TTX-ACSF for 4 min. Once the brain was cold and firm, it was cut coro-

nally through frontal cortex to obtain a flat mounting surface, andmounted to a slicing chamber using cyanoacrylate adhesive. Slices

were immediately cut on a vibratome (Leica VT1000S, Diegem, Belgium) in cold carbogenated TTX-ACSF. Immediately after cutting,

each slicewas transferred to an incubation chamber placed inwarm (34�C) continuously carbogenated choline solution for protective

recovery. After 10 min, slices were transferred to warm (34�C) continuously carbogenated TTX-ACSF for 40 min. They were then

removed from the incubator, placed in room temperature TTX-ACSF and allowed to return to room temperature before recording.

TTX-ACSF was used throughout to prevent additional plasticity due to activity in the slice after cutting. Slices were used for record-

ings for up to 6 post-slicing.

mEPSC recordings

Borosilicate glass pipettes were pulled on a Sutter P-97 Micropipette puller. Pipettes were used if they had tip resistances ranging

from 4-6 MU, and filled with K-gluconate internal solution. V1m was identified in acute slices using the rat brain atlas (Paxinos and

Watson, 1998) based on morphology of the hippocampus and white matter, and a high-contrast band corresponding to layer 4 (L4).

Pyramidal L2/3 neurons were identified by their position (dorsal to L4), teardrop-shaped soma and presence of an apical dendrite.

This was confirmed by post hoc reconstruction of biocytin fills. On any given recording day cells were patched from both re-opened

and control hemispheres. All recordings were performed in submerged slices continuously perfused with carbogenated ACSF at

32�C. Cells were visualized on an upright microscope (Olympus BX51WI) using a 10x air (NA 1.13) or 40x water-immersion (NA

0.8) objective and an infrared CCD camera. Cells were patched using pipettes filled as above and with a chlorided silver electrode.

Data were low-pass filtered at 5 kHz acquired at 10 kHz using a National Instruments Data Acquisition Board (DAQ, National

Instruments, Woburn, MA, USA) and custom MATLAB software. All post hoc analyses were done using in-house software written

in MATLAB. For mEPSC recordings, TTX-ACSF with added AP-5 (50 mM) and picrotoxin (25 mM) was used to block action potentials

and NMDA and GABA currents, and isolate AMPA currents. Neurons were held in voltage clamp at �70 mV while at least 20 traces

(10 s duration) were recorded at 10x gain. Neuronswere excluded from analysis if series resistancewas above 25MU, if restingmem-

brane potential (Vm) was above �60 mV, or if Vm changed by more than 10% during trace acquisition. For event detection, 3 traces

with stable baseline were selected. In order to both reliably detect mEPSC events above noise and to limit bias in selection, we used

an in-house program written in MATLAB that employs a semi-automated template-based detection method contained in a GUI. In

brief, the program first filters the raw current traces and then applies a canonical mEPSC event shaped template to detect regions of

best fit. Multiple tunable parameters for template threshold and event kinetics that aid in detectionwere optimized and then chosen to

stay constant for all analyses. Putative events are then analyzed for hallmark features of mEPSC (risetime kinetics, decay time,

minimum amplitude cutoffs, etc.). Finally, the results of the automated detection are reviewed with minor manual revisions made

(< 5%) for the inclusion/exclusion of events. We performed all of this analysis (including the manual revisions) blind to experimental

conditions. Neurons were excluded from analysis post hoc if they were determined to be non-pyramidal based upon biocytin

reconstruction.

Semi-automated behavioral state scoring
Local field potentials (LFPs) were extracted from the raw in vivo electrophysiology traces by low-pass filtering data from 3 channels at

300 Hz, resampling at 200 Hz, and averaging. We computed power spectral densities using MATLAB’s fast-fourier transform (FFT)

implementation in 10 s bins and frequency bins from 0.3 to 15 Hz (0.1 Hz steps). Power in the delta (0.3 – 4 Hz) and theta (5 – 8 Hz)

bands was calculated in each 10 s bin as a fraction of total power. EMG signals from the two wires were averaged and resampled at

200 Hz. Animal movement was tracked in recorded videos (recoded using an infrared camera) using open-source software written in

C++ (Video Blob Tracking, Open Source Instruments, Watertown, MA, USA; Github: https://github.com/OSI-INC/VBT) and modified
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in-house to suit our needs (adding video cropping, tracking in both light and dark conditions). For sleep classification, we built a

custom graphical user interface (GUI) in MATLAB. Data was presented to an observer in 1-hour blocks and scored in 10 s bins.

Scoring of the first 10 blocks was manual, based on previously published criteria (Hengen et al., 2016; Torrado Pacheco et al.,

2019), and included 4 states: NREM sleep (high delta power, low theta power; low EMGandmovement); REM sleep (low delta power;

high theta power; lowest EMG andmovement); quiet wake (low delta and theta; low EMG andmovement); active wake (low delta and

theta; higher EMG and movement). After block 10, a random forest classifier model (Python Scikit-Learn implementation) was built

based on scoring of blocks 1-10. The features used in the model were power in the delta, theta and gamma (40 – 100 Hz) bands,

theta-delta power ratio, z-scored EMG and movement signal. The model was used to classify new data (blocks 11 and above),

and the result was displayed in the GUI. Trained human scorers were then able to check LFP power, EMG and movement traces,

as well as view video recordings, to correct the classification. The model was updated with each new scored block until the training

set reached 10,000 bins (limit set for efficiency and speed). Thereafter, the training set was continuously updated to contain the most

recently coded 10,000 bins. The GUI also allowed experimenters to exclude a block for training (in case of corrupted data, or animal

unplugging for surgery). This algorithm reached an OOB error of < 10% and real error (i.e., % of bins that had to be corrected) of 1%–

4% in sleep-heavy blocks, and 5%–15% in wake-heavy blocks, the main difficulty being distinguishing quiet versus active wake.

Firing rate analyses
Estimation of neuronal firing rates and change in firing rate

To obtain firing rates estimates for individual RSUs from spike timestamps we computed spike counts in 60 s bins and applied a

Gaussian kernel with s = 300 s (Figures 1, 2, 4, and 6), or we computed the spike rate in non-overlapping 1 s bins (Figure 5). To calcu-

latemean firing rates in 12-hour periods we took the average firing rate across all bins in that period (Figures 1 and 2). firing rates were

normalized to baseline by dividing all firing rate bins by themean firing rate in the chosen 12-hour baseline period (Figures 1, 2, and 6).

To calculate firing rate z-scores over an episode of extended sleep or wake (Figure 5) we computed the mean and SD of the non-

normalized firing rate over that episode and applied the formula zFR = ðFR -- mÞ=s, where m and s are the mean and SD and firing

rate is the non-normalized firing rate. To estimate the change between first and last epochs of a state in extended sleep or wake (Fig-

ure 5) we subtracted the mean z-scored firing rate of the first epoch from the last one. To estimate the changes in firing rate in sleep-

and wake-dense windows we used the formula ðB � AÞ=ðA + BÞ. For the result in Figure 4, we defined A and B as the mean firing

rate in the first and last 15 minutes of the S- or W-dense window. For the MD-induced drop (Figure 8E) we defined A and B as the

mean firing rate in the first and last 40% of the window. To estimate the total change in firing rate across the drop we used the same

approach, but with A being the mean baseline firing rate and B being the mean firing rate in last 20% of the drop period (Figure 8F).

Estimating start of MD-induced drop

To estimate the start of the drop for each neuron in an unbiased way, we designed the following algorithm. A 2-hour window was

stepped through the data in 15-minute increments and the neuron’s firing rate in that windowwas fit with a linear function to calculate

the slope. Negative and positive slopes at least one s.d. from the mean slope were selected, and a kernel density estimate (KDE) was

calculated separately for the positive and negative ones. The drop start time was identified as the first time that the difference be-

tween the negative and positive KDE went above 70%. This start time was then used to classify neurons as ‘‘early drop’’ or ‘‘late

drop’’ depending on whether it fell within the first or second light period after MD.

Bootstrap analysis of firing rate recovery

For the results in Figure S2, we used two separate bootstrap methods to analyze the firing rate recovery. We set out to ask whether

the change in firing rate observed for the re-opened hemisphere data on ER4 (Figure 1F, right) is consistent with cell-autonomous

recovery of activity, or if it could arise from a non-cell-autonomous process. To do this we modeled what the result of the analysis

in Figure 1F would look like in the non-cell-autonomous case. Our starting distributions were the data in Figure 1G. We hypothesize

that to achieve an average % change close to 0, as we observed in our data (Figure 1F), each cell must return close to its baseline

firing rate value; in other words, neurons in the distribution at ER4 are largely in the same order as theywere in theMD4distribution. To

simulate non-cell-autonomous homeostasis we kept the real MD4 distribution as our starting point and used either a ‘‘shuffle’’ or a

‘‘sample’’ strategy to create simulated ER4 distributions. The ‘‘sample’’ bootstrap strategy (Figure S2A, middle) consists in sampling

at random from the empirical distribution of firing rates at late ER, and randomlymatching to baseline values. Note that this results in a

mean population firing rate different than that of real data. The ‘‘shuffle’’ bootstrap strategy (Figure S2A, right) does not resample the

late ER distribution, but simply shuffles the matching between baseline and late ER data points. This preserves the real mean pop-

ulation firing rate, but not the % change of individual neurons. Both the shuffling and sampling analyses were done 10,000 times to

obtain 10,000 bootstrap means and corresponding confidence intervals (Figure S2B). The results in Figure S2C show that the value

obtained in our experiments is outside the 99% confidence interval for both analyses. We also aimed to determine the range of

variation of firing rate in the real data. In other words, how precisely do neurons return to their baseline firing rate? To do this we

calculated the fraction of neurons returning to within X% of their baseline firing rate, where X was varied from 10% to 100%, in

both our real data and for both bootstrap methods. We used the bootstrap distributions to obtain 99%CIs for the fraction of neurons

at each % threshold value. We find that more than 50% of real neurons return to within 50% of their baseline firing rate, and the real

value diverges from the bootstrap results at the 40% threshold (Figure S2D).
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Sleep analyses
Sleep- and wake-dense windows

For the results in Figure 4, we scanned hours 192-240 of the experiment (ER2-ER4) in 15 min steps for 2.5 h periods of time where

animals had been awake or asleep for at least 70% of the time. When a dense window was found the algorithm restarted scanning at

the end of that window (i.e., windows were not double-counted). The firing rate change was calculated for each unit as (B – A)/(B + A),

where A and B represent the mean firing rate in the first and last 15 min of the window. We repeated this analysis with different pa-

rameters to confirm that our results were not spurious: similar results were obtained when changing the size of the window and the

density % threshold (Figure S6).

Extended sleep and wake analyses

For the results in Figure 5, we scanned hours 192-240 of the experiment for periods of extended wake or sleep, defined as at least

30min of wake or sleepwithout interruptions greater than 1min. Only states that were 30 s or longer were considered for this analysis.

The firing rate for each cell was z-scored to the mean and s.d. of the firing rate for the whole extended sleep or wake episode.

Sleep triplets analyses

For the results in Figure 7, we scanned hours 192-240 (during downward FRH) of the experiment to detect cycling between sleep

states matching either the NREM-REM-NREM pattern (NRN triplets), or the REM-NREM-REM pattern (RNR triplets). Behavioral

states shorter than 50 s were not included for analysis. To analyze the change in firing rate across triplets we computed, for each

neuron, themean firing rate in the last ‘‘packet’’ of state 1 and themean firing rate in the first ‘‘packet’’ of state 3. Packets were defined

to be 5-minutes long for NRN triplets and 90 s long for RNR triplets. To avoid effects due to firing rates undergoing dramatic changes

at the transition between sleep states, we excluded 1 minute of data adjacent to the transition for NRN triplets, and 30 s for RNR

triplets. We also only considered triplets in which the REM episodes were at least 3 minutes long.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis was done using custom code written in MATLAB. Values are reported in the text body asmean ± SEM. For statistical

analyses n’s, p values and the kind of test used are provided in the figure caption. Normality was assessed using an Anderson-Darling

test (MATLAB implementation), with a = 0.05. To compare means across groups for normally distributed data we used one-way

ANOVA followed by Tukey-Kramer post hoc for pairwise comparisons, or 2-sample t tests to compare two groups only. For

non-normally distributed data we used a Kruskal-Wallis test followed by Tukey-Kramer post hoc for pairwise comparisons. For

non-normal paired data we used Wilcoxon sign-rank tests followed by Bonferroni corrections for multiple comparisons. To compare

cumulative distributions we used a two-sample Kolmogorov-Smirnov (K-S) test or a two-sample Kuiper test with Bonferroni correc-

tions for multiple comparisons. Correlations strength and significance were estimated using Pearson’s r. To comparemultiple groups

to a fixed mean (usually 0) we either used one-sample t tests, or fit the data using a linear model with no intercept and with group

membership coded as a dummy variable, then used a one-way ANOVA to estimate significance.
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