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Abstract
Primary cilia have well characterized roles in early brain
development, relaying signals critical for neurogenesis and
brain formation during embryonic stages. Less understood are
the contributions of cilia-mediated signaling to postnatal brain
function. Several cilia-localized receptors that bind neuropep-
tides and neurotransmitters endogenous to the brain have
been identified in adult neurons, but the functional significance
of signaling through these cilia-localized receptors is largely
unexplored. Ciliopathic disorders in humans often manifest
with neurodevelopmental abnormalities and cognitive deficits.
Intriguingly, recent research has also linked several neuro-
psychiatric disorders and neurodegenerative diseases to
ciliary dysfunction. This review summarizes recent evidence
suggesting that cilia signaling may dynamically regulate post-
natal neuronal physiology and connectivity, and highlights
possible links among cilia, neuronal circuitry, neuron survival,
and neurological disorders.
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Introduction
With a few exceptions, microtubule-based primary cilia
are found as solitary organelles projecting from the sur-
face of nearly every mammalian cell type including
neurons and glia [1]. These immotile cilia are compact
signaling structures that concentrate a variety of
signaling machinery and are well-suited to transduce
www.sciencedirect.com
extracellular and environmental stimuli. Indeed, a key
breakthrough in establishing the importance of these
structures in broadly regulating cellular development
and homeostasis in mammals was the finding that cilia
are essential for transduction of the developmental

morphogen Sonic hedgehog (Shh) [2], and the subse-
quent implication of aberrant ciliary signaling in human
pathophysiology [3]. Although the presence of cilia in
the brain had been described as early as the 1950s, initial
efforts focused primarily on the roles of cilia in trans-
ducing external stimuli in sensory neurons, and the roles
of these organelles in other neuron types and glia
remained largely unexplored for decades.

Subsequent work has now described critical develop-
mental roles for ciliary signaling in brain patterning,

neurogenesis, neuronal migration and maturation,
neurite outgrowth, and circuit integration both during
embryonic development and in adult neurogenic niches
[1,4,5]. However, less appreciated is the fact that cilia
are not only retained on postmitotic neurons and as-
trocytes at all postnatal stages through adulthood, but
continue to serve critical neuromodulatory functions
throughout an animal’s lifespan. Characteristic features
of many disorders arising from disrupted cilia function
(collectively termed ciliopathies) include neuro-
developmental defects, cognitive deficits, obesity, and

neurodegeneration [6,7]. Recently, several neuropsy-
chiatric disorders have also been linked to ciliary
dysfunction [7e9]. Whether altered ciliary signaling in
the postnatal brain contributes to these disorders is not
yet established but represents an exciting area of cur-
rent and future research.

In this brief review, we highlight a subset of recent work
that describes unexpected emerging roles for ciliary
signaling in modulating and maintaining neuron and
circuit functions in the postnatal brain. We refer the

reader to several excellent reviews on the roles of pri-
mary cilia in neuronal development and sensory func-
tions [1,4]; these topics are not further discussed here.

Cilia in the postnatal brain
Cilia are compartmentalized organelles that actively
concentrate receptors and signaling molecules while
excluding non-ciliary proteins [10,11]. The
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identification of ciliary molecules has now permitted
the characterization of cilia on cell types across
different mammalian brain regions. The majority of
mature neurons and astrocytes in the central nervous
system extend a single primary cilium (Figure 1),
although curiously, neither mature microglia nor oli-
godendrocytes appear to contain cilia [12,13]. Cilia
typically emanate from the soma and can be oriented in

different directions depending on the brain region and
neuron type [14], [15**]. Neurons with defined apical
dendrites tend to have apically oriented cilia, whereas
subtypes lacking apical dendrites display a wider range
of orientations [14], [15**], [16].

In the mouse cortex, neuronal cilia elongate during
postnatal development, reaching their maximal lengths
by P60eP90 [16]. Both their rates of elongation and
maximal lengths vary across brain region and cortical
layer [12,16,17]. Further complicating matters, cilia

length and morphologies are also regulated by ligand
binding and the complement of signaling proteins
expressed within the ciliary membrane [18e21]. Cilia
are retained as neurons age, although their protein
composition is altered across the lifespan, and may
contribute to age-related neurological dysfunction [22].

Postnatal neuronal cilia contain G protein-coupled
receptors
Neuronal cilia house a variety of signaling molecules
including G protein-coupled receptors (GPCRs), recep-
tor tyrosine kinases (RTKs), ion channels and down-
stream effectors [23,24]. The complement of ciliary
proteins is dynamically regulated across developmental

stages and environmental conditions. In the postnatal
brain, the best characterized ciliary receptors are GPCRs
for amine neurotransmitters and neuropeptides, many of
which have been well-established to play wide-ranging
Figure 1

Cilia are present on postnatal neurons and astrocytes. (a) Primary cilium of a
tibodies against ARL13b and PCNT label the length and base of the cilium re
P22 rat cortex immunolabeled with antibodies against AC3 and SSTR3. (c) P
with DAPI and immunolabeled with antibodies against AC3 and SSTR3. Note
images. Scale bars: 5 mm. b,c adapted from [65**].
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and critical roles in modulating brain physiology. Ciliary
GPCR expression varies across brain region and cell type
and includes receptors for somatostatin (SSTR3), kiss-
peptin (KISS1R), serotonin (HT6R), melanin concen-
trating hormone (MCHR1), dopamine (DRD1, DRD2,
DRD5), and neuropeptide Y (NPY2R) among others
[24e26]. These receptors appear to be enriched in cilia
with low to negligible levels in the cell’s plasma mem-

brane (Figure 1b), suggesting that signaling through the
cilium plays a distinct role in regulating neuronal func-
tions. Sequestering signaling components within the
ciliummay allow neurons to achieve diverse physiological
effects through shared signaling pathways. For instance,
recent work has shown that ciliary GPCRs and cAMP, but
not plasma membrane-localized GPCRs or cytoplasmi-
cally produced cAMP, regulate sonic Hedgehog signaling
in part via activation of cilia-localized protein kinase A
[27]. Moreover, the larger surface to volume ratio in cilia
likely enables robust physiological responses to small

but nevertheless relevant environmental signals in part
via generation of high local concentrations of effec-
tors [27,28].

Although the expression of a subset of ciliary receptors
has been examined in some detail, and proteomic and
transcriptomic efforts are now establishing the complete
ciliary compendium in many cell types [29,30], these
approaches have yet to be widely applied to defined
neuronal subtypes. Consequently, the degree to which
the ciliary signaling machinery is fine-tuned for specific

neuronal functions is still unknown. In addition to
exhibiting cell and region specificity, the ciliary com-
plement of GPCRs is subject to dynamic modulation.
Localization of a subset of receptors is ligand-dependent
[31e33], and neuropeptide GPCRs such as SSTR3 and
NPY2R can be actively removed from the ciliary mem-
brane upon ligand addition via internalization, ciliary
GFP-expressing DIV20 astrocyte cultured from newborn rat cortex. An-
spectively. (b) Primary cilium of a GFP-expressing pyramidal neuron from
rimary cilium of a GAD67-expressing neuron from P22 rat cortex stained
absence of SSTR3 from interneuron cilium. Arrows point to cilia in all
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scission, or ectosome shedding [32,34e36]. As some of
these experiments were carried out in non-neuronal cell
types or in vitro, the degree to which similar principles
operate in neurons in vivo is not yet clear.

The best characterized effector of neuronal ciliary
GPCRs is adenylate cyclase 3 (AC3) which converts
ATP to cAMP to initiate downstream signaling [37].

Originally identified in olfactory sensory neurons, AC3 is
nearly ubiquitously present in neuronal cilia in the brain
(Figure 1b and c), with rare expression in astrocytic cilia
[12,38,39]. Additional effectors downstream of ciliary
GPCRs include PI3 kinases which generate PIP3 from
PIP2; PIP3 in turn activates the AKT kinase to regulate
multiple aspects of cellular functions [40]. Chemo- or
optogenetic activation of cilia-localized AC3, PI3 kinase
or AKTwas shown to be sufficient to modulate growth
cone dynamics and neurite outgrowth in developing
neurons [41,42]. These signaling pathways are known to

influence a wide range of neuronal functions in postnatal
and adult neurons, including synapse formation, turn-
over, and plasticity [43,44]. Ciliary signaling is thus
poised to influence microcircuit wiring by efficiently
coupling neuropeptide or aminergic activation of
GPCRs to intracellular second messenger pathways.

Hypothalamic neuronal cilia regulate metabolic
homeostasis circuits
A particularly important and well-characterized role for
cilia-dependent neuromodulation in the postnatal brain
is in the regulation of satiety. Obesity is characteristic of
many human ciliopathies, pointing to a critical role of
cilia function in the hypothalamus [45e47]. While

congenital knockouts of many ciliary genes are linked to
obesity [47], whether these effects are due to devel-
opmental or post-developmental roles for cilia in the
hypothalamus are unclear. Recent work indicates that
ciliary signaling continues to be essential during post-
natal stages to maintain metabolic homeostasis. Multi-
ple studies have now shown that disruption of cilia via
conditional knockouts of ciliary genes throughout the
central nervous system or from specific hypothalamic
neurons in adult mice leads to hyperphagia and obesity
within a few weeks [48*], [49e51].

Subtypes of hypothalamic neurons differentially express
several ciliary neuropeptide receptors linked to weight
and food intake [52,53**]. Recently, the melanocortin 4
receptor (MC4R), known to regulate appetite, was
shown to localize to the cilia of a subset of neurons in the
paraventricular nucleus (PVN) in the hypothalamus.
Mutations in MC4R linked to obesity in humans
disrupted this ciliary localization [53**]. While addition
of MC4R agonists resulted in weight loss, this effect was
abolished upon cilia ablation in adult mice over a period

of a few weeks [49]. In addition, conditional inhibition of
ciliary AC3 signaling in PVN neurons in 20-week old mice
www.sciencedirect.com
resulted in weight gain within 3e6 weeks [49,53**].
It is interesting to note that cilia disruption in hypotha-
lamic arcuate nucleus neurons that produce the MC4R
agonist a-melanocyte stimulating hormone (a-MSH),
results in obesity only when manipulated during early
postnatal development (P1eP14) but not at later stages
[17]. Ciliary signaling may be required during distinct
temporal stages in different regions of hypothalamus

to regulate energy metabolism. Given the remarkable
complexity of hypothalamic networks underlying weight
and appetite control, it is also possible that neuron
subtype-specific ciliary disruption in different hypotha-
lamic nuclei can be compensated for only at specific post-
developmental stages.

Cilia are required for the maintenance of postnatal
neuronal circuits and neuron survival
There is exciting recent evidence for an ongoing role for
cilia in maintaining circuit connections and promoting
neuronal survival in the postnatal brain. Conditional
knockout of the ciliary small GTPase Arl13b from
parvalbumin-expressing neurons during early postnatal

development had no impact at P30, but by P60, in-
terneurons in the striatum, cortex and hippocampus
exhibited markedly reduced neurite length and synapse
density [42] (Figure 2aec). This study suggests that
ciliary signaling is important over long timescales for
maintaining inhibitory synaptic connectivity.

In the cerebellum, disruption of neuronal cilia led first
to loss of excitatory synapses, and then to neuro-
degeneration [54**]. Mutations in tau tubulin kinase 2
(TTBK2), a regulator of ciliogenesis, cause spinocer-

ebellar ataxia type 11 (SCA11) in humans, a neurode-
generative disorder characterized by Purkinje cell loss
[55]. Cell-autonomous knockout of TTBK2 or disrup-
tion of cilia structure led to markedly reduced excitatory
synapses from climbing fibers onto Purkinje neurons
after three months [54**] (Figure 2d and e). When
analyses were extended to 5e6 months, a progressive
degenerative phenotype was observed, characterized by
Purkinje neuron cell death [54**] (Figure 2f and g).
Moreover, these mice exhibited motor coordination
phenotypes characteristic of SCA11 [54**]. Whether

neuronal degeneration ultimately occurs in all brain re-
gions following prolonged cilia loss, or if this is specific to
the cerebellum, is currently unknown.

Recent studies have also uncovered a possible mecha-
nistic link between cilia dysfunction and the loss of
nigrostriatal dopaminergic neurons characteristic of
Parkinson’s disease. Pathogenic mutations in Leucine-
rich repeat kinase 2 (LRRK2) were found to disrupt
ciliogenesis in cells in vitro and in vivo [56,57*], and led
to defects in ciliation and cilia length in striatal astro-

cytes [58*]. Reciprocal trophic factor signaling between
neurons in the nigrostriatal pathway is critical for the
Current Opinion in Neurobiology 2022, 74:102533
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Figure 2

Cilia maintain synaptic connectivity and promote neuronal survival. (a) Cortical interneurons expressing tdTomato from control (i) and ciliary GTPase
Arl13b conditional knockout (ii) mouse brains at P60. Cre was expressed in interneurons starting at P14 using the Parvalbumin (Parv) promoter. Note
marked loss of dendritic arbors upon knockout of Arl13b. Adapted from Ref. [42]. (b–c) Representative images (b) and quantification (c) of perisomatic
synaptic bouton density of tdTomato-expressing cortical interneurons contacting NeuN+ projection neurons upon conditional knockout of Arl13band in
control animals. Arrowheads indicate synaptic boutons in b. Scale bar: 20 mm. Adapted from Ref. [42]. (d–e) Representative images (d) and quantifi-
cation of VGLUT2 puncta (e) on Purkinje cell dendrites in cerebellar tissue from control and Ttbk2 conditional mutant mouse brains at P30 or P90. Ttbk2
loss was induced specifically in Purkinje cells using Cre under the Pcp2 promoter that drives expression starting at P6. In d, Purkinje cells are immu-
nolabeled with antibodies against Calbindin, glutamatergic synapses from climbing fibers are immunolabeled with antibodies against VGLUT2, nuclei are
stained with DAPI. Each data point in e represents one analyzed field, five fields per animal, n = 3 animals each. Errors are SEM. P = 0.0098 (one-way
ANOVA and Tukey correction). Scale bar: 20 mm. Note loss of glutamatergic synapses at P90 but not at P30. (f–g) Representative images (f) and
quantification (g) of Calbindin+ Purkinje cell soma upon conditional loss of Ttbk2 at 4 or 6 months along with controls. Note loss of Purkinje cells in Ttbk2
mutants at 6 months. Scale bar: 50 mm. Errors are SEM. P < 0.0001 (Student’s unpaired t-test). d–g adapted from [54**].
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survival of the circuit. Mesencephalic dopaminergic
neurons signal to striatal cholinergic and fast spiking
interneurons via Shh to regulate expression of the
neurotrophic factor GDNF. Conversely, trophic GDNF
signaling from striatal cholinergic neurons regulates Shh
expression in dopaminergic neurons [59]. Loss of Shh
signaling results in the progressive degeneration of both
mesencephalic dopaminergic and striatal interneurons.

Since Shh signaling requires cilia, this suggests that
ciliary signaling is neuroprotective for dopaminergic
neurons and is critical for maintenance of the nigros-
triatal circuit [58*].

There are intriguing hints that cilia may also influence
other neurodegenerative diseases and protect against
environmental insults although the mechanistic links
are not fully understood [60]. Signaling via the cilia-
localized insulin-like growth factor receptor and AKT
in the cerebral cortex has been suggested to be neuro-

protective against stressors such as alcohol and anes-
thetics during early postnatal stages [61]. In mouse
models of Alzheimer’s and in vitro, the presence of
pathogenic amyloid b correlates with reduced cilia
length [62]. Intriguingly, amyloid precursor protein lo-
calizes to cilia, and inhibition of Shh signaling reduces
its cleavage into pathogenic amyloid b [63]. Similarly,
cilia length in the striatum but not cortex is also affected
in a mouse model of Huntington’s disease [64]. Whether
disrupted cilia structure is a cause or effect of these
diseases, and whether disruption of ciliary signaling

contributes to disease progression is not yet known.
Established animal models for neurodegenerative dis-
orders may provide unique opportunities to reveal how
cilia contribute to circuit maintenance and neuron sur-
vival in aging animals.

Ciliary signaling dynamically regulates postnatal
neuronal properties
The examples above illustrate how cilia contribute to
the long-term maintenance of neurons and circuits in
the mature brain, but do not address whether ciliary
signaling might play a more dynamic role in brain
function. Given the concentration of peptide and hor-
mone receptors in the cilium, neuromodulation via cilia

provides an intriguing mechanism by which neurons
might continuously monitor ongoing network activity
and rapidly adjust their synaptic and intrinsic properties
in response. Evidence in support of acute cilia-
dependent neuromodulation has now been provided
by three recent studies described below.

In the first, acute disruption of cilia structure and/or
signaling in postnatal neocortical cultures for as little
as 24e48h induced significant strengthening of
excitatory synapses onto excitatory pyramidal neurons
and increased network excitability [65**] (Figure 3).
Interestingly, these manipulations had no effect on
inhibitory synapses onto pyramidal neurons.
www.sciencedirect.com
Additionally, excitatory but not inhibitory neuronal
cilia in the visual cortices of P22 rats were found to
contain SSTR3 [65**] (Figure 1b). The neuropeptide
somatostatin is produced by a subset of interneurons
in the cortex although its function is largely unchar-
acterized. Acute (24e48h) pharmacological antago-
nism and agonism of SSTR3 led to bidirectional
modulation of excitatory synaptic strength of pyrami-

dal neurons, such that agonism weakened, and antag-
onism strengthened, excitatory synapses [65**]. This
work suggests that ciliary signaling may continuously
adjust neuronal properties in response to incoming
stimuli to maintain the balance of excitation and in-
hibition within a homeostatic range. Whether synapses
of inhibitory neurons are similarly modulated and if so,
via which ciliary signaling pathway(s), is unknown.

In a second study, overexpression of ciliary 5-HT6R in
hippocampal neurons cultured from newborn mice was

shown to result in decreased excitability [66]; neurons
overexpressing 5-HT6R fired fewer action potentials in
response to current injection than control neurons. This
decreased excitability correlated with changes in cilia and
axon initial segment (AIS) morphologies. In agreement
with a previous report [19], overexpression of 5-HT6R
caused lengthening and aberrant branching of cilia, and
disrupted the localization of endogenous ciliary proteins
including AC3 and SSTR3. Surprisingly, a subset of AIS
components such as AnkG and the voltage-gated sodium
channel Nav1.2 were mislocalized to the ciliary

compartment in neurons overexpressing 5-HT6R [66].
Expression of 5-HT6R was also found to regulate prop-
erties of the AIS; overexpression of the receptor
increased AIS length and decreased its distance from the
soma, and conversely, siRNA-mediated knockdown of
5HTR6 decreased AIS length [66]. Structural changes in
the AIS are associated with homeostatic adaptations in
intrinsic excitability [67], suggesting an intriguing
possible mechanism by which ciliary signaling can
modulate neuronal excitability in the postnatal brain.

The role of ciliary HT6R in hippocampal neurons was

further explored in a third study. Using focused ion
beam-scanning electron microscopy (FIB-SEM), a
subset of adult hippocampal pyramidal neuron cilia
containing 5-HT6R was found to be in close apposition
to axonal varicosities with physical features of synapses;
these axons were proposed to be from serotonergic
neurons of the midbrain [15**]. Activation of seroto-
nergic signaling in hippocampal neurons was associated
with transcriptional changes, suggesting that acute
ciliary signaling may regulate neuronal excitability and
synaptic properties via transcriptional mechanisms

[15**]. The identification of axo-ciliary synapses in
dense brain neuropils raises a number of interesting
questions regarding how these synapses are established
and maintained, and how these synapses contribute to
modulating neuronal functions. Together, a general
Current Opinion in Neurobiology 2022, 74:102533
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Figure 3

Ciliary signaling acutely modulates neuronal properties. (a) Dendrites of control and shArl13b-transfected DIV11 cortical pyramidal neurons cultured from
newborn rats. Excitatory synapses are immunolabeled with anti-VGlut1 and anti-GluA2 antibodies. Scale bar: 5 mm. (b) Quantification of relative fluo-
rescence intensity of immunolabeled GluA2 at excitatory synapses 24h or 48h following transfection of control or two independent shArl13b-containing
plasmids. Each dot is the average summed fluorescence intensity of all measured synapses from a single neuron. Errors are SEM. P < 0.001 (Wilcoxon
rank-sum test). (c) Increased spontaneous activity in pyramidal neurons expressing the shArl13b plasmid as compared to neurons transfected with a
control plasmid. P < 0.05 (Wilcoxon rank-sum test). a–c adapted from [65**].
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theme arising from these initial studies is that signaling
from the cilium provides ongoing input to individual
neurons to dynamically adjust their excitability through
both synaptic and intrinsic mechanisms.

The function of primary cilia on mature astrocytes
In contrast to neurons, the role of cilia on mature astro-
cytes is poorly understood. Astrocytic cilia do not appear

to be enriched for neuropeptide receptors or AC3 found
on neuronal cilia, although they do contain Arl13b and
receptors (LPARs) for the mitogen lysophosphatidic acid
Figure 4

Known and unknown roles and mechanisms of ciliary signaling in the postnata
in the postnatal brain. Indicated below are a subset of the questions that rem

Current Opinion in Neurobiology 2022, 74:102533
(LPA) [12,13]. Excitotoxic injury can result in the for-
mation of reactive astrocytes which can be neuro-
protective or neurotoxic, and unlike postmitotic neurons,
can proliferate [68]. Seizures have been shown to
decrease astrocytic cilia length [69], and congenital or

conditional loss of the ciliary trafficking protein BBS8 at
early postnatal stages results in increased expression of
subsets of markers for reactive astrocytes [70]. Moreover,
signaling through the astrocytic cilium has been linked
to astrocyte proliferation and glioblastomas [71e73].
Whether ciliary signaling in astrocytes modulates synapse
l brain. Shown are known functions of acute and prolonged ciliary signaling
ains to be addressed in this area.

www.sciencedirect.com
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remodeling and neurotransmitter recycling is unknown,
but astrocytic cilia defects may for instance underlie a
subset of the striatal circuit dysfunction associated with
pathogenic mutations in LRRK2 [58*]. The role of cilia
in astrocytes remains an unexplored but exciting frontier
for future research.
Conclusions
We now know just enough to recognize that there are
many unknowns about the role of cilia in the postnatal
brain (Figure 4). How neuropeptides and amines reach
and activate ciliary GPCRs is one critical question; we
do not currently know whether the primary mode of

activation is via diffusion from distant sources, or
whether cilia are commonly juxtaposed to synaptic
structures in the dense neuropils within which they are
embedded. In addition to receiving extracellular signals,
cilia are now understood to also send signals via the
production of extracellular vesicles [74,75]. Whether
this occurs in vivo in the mammalian brain is not known
but may represent another form of cilia-mediated
communication in the adult brain. Providing a com-
plete description of cilia morphological positions, and
defining the origin and release mechanisms of the

neuropeptides and amines that trigger ciliary signaling
in the postnatal brain, are critical immediate challenges.

The signaling protein content of neuronal and glial cilia
also needs to be defined not only by cell type and
developmental stage but also in different cellular con-
ditions. For instance, cilia transcriptomes in the primate
brain appear to be subject to circadian control and age,
pointing to additional complexities in deciphering the
ciliary protein complement [22,76]. Specific manipula-
tion of cilia signaling pathways across postnatal stages,
and determination of their effects on neuronal and cir-

cuit properties, are additional important priorities.

Given the emerging roles of ciliary signaling in the
postnatal brain, it is also now imperative to understand
how aberrant ciliary signaling at adult stages contributes
to multiple neurocognitive and neurodegenerative dis-
orders [7e9,60,77e79]. Gene therapy approaches to
restore cilia function in adult olfactory neurons and
photoreceptors have been shown to partially reverse
sensory phenotypes such as anosmia and blindness
[50,80,81]. Perhaps pharmacological targeting of cilia-

specific receptors in adult brains could similarly
ameliorate some of the symptoms associated with cilia-
related diseases. We expect that renewed appreciation
of this highly conserved structure will continue to foster
collaborations between cilia biologists and neuroscien-
tists, and will lead to new and unexpected insights into
the contributions of this ancient organelle to the dy-
namic regulation of the developing and mature brain.
www.sciencedirect.com
Topic selection
Discussed articles were selected following a PubMed

search for the terms ‘cilia’ and ‘brain’ and were largely
restricted to those from 2016-current. A subset of rele-
vant articles from bioRxiv is also highlighted.
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